
    *g                        d dl mZ d dlmZ d dlZd dlmZ d dlm	Z	m
Z
 d dlmZ erd dlmZ d dlmZ d d	lmZmZ 	 d	 	 	 	 	 dd
Z	 	 	 	 	 	 	 	 ddZddZy)    )annotations)TYPE_CHECKINGN)remove_na_arraylike)
MultiIndexconcat)unpack_single_str_list)Hashable)
IndexLabel)	DataFrameSeriesc           	        |dk(  rd}nd}t        | j                  t              sJ | j                  j                  |   D ci c]2  }|| j                  dd| j                  j                  |      |k(  f   4 c}S c c}w )a~  
    Create data for iteration given `by` is assigned or not, and it is only
    used in both hist and boxplot.

    If `by` is assigned, return a dictionary of DataFrames in which the key of
    dictionary is the values in groups.
    If `by` is not assigned, return input as is, and this preserves current
    status of iter_data.

    Parameters
    ----------
    data : reformatted grouped data from `_compute_plot_data` method.
    kind : str, plot kind. This function is only used for `hist` and `box` plots.

    Returns
    -------
    iter_data : DataFrame or Dictionary of DataFrames

    Examples
    --------
    If `by` is assigned:

    >>> import numpy as np
    >>> tuples = [('h1', 'a'), ('h1', 'b'), ('h2', 'a'), ('h2', 'b')]
    >>> mi = pd.MultiIndex.from_tuples(tuples)
    >>> value = [[1, 3, np.nan, np.nan],
    ...          [3, 4, np.nan, np.nan], [np.nan, np.nan, 5, 6]]
    >>> data = pd.DataFrame(value, columns=mi)
    >>> create_iter_data_given_by(data)
    {'h1':     h1
         a    b
    0  1.0  3.0
    1  3.0  4.0
    2  NaN  NaN, 'h2':     h2
         a    b
    0  NaN  NaN
    1  NaN  NaN
    2  5.0  6.0}
    histr      N)
isinstancecolumnsr   levelslocget_level_values)datakindlevelcols       m/var/www/html/articles-backend/trend/venv/lib/python3.12/site-packages/pandas/plotting/_matplotlib/groupby.pycreate_iter_data_given_byr      s    ^ v~ dllJ/// <<&&u- 	TXXa66u=DDEE  s   7A<c                    t        |      }| j                  |      }g }|D ]:  \  }}t        j                  |g|g      }||   }	||	_        |j                  |	       < t        |d      } | S )al  
    Internal function to group data, and reassign multiindex column names onto the
    result in order to let grouped data be used in _compute_plot_data method.

    Parameters
    ----------
    data : Original DataFrame to plot
    by : grouped `by` parameter selected by users
    cols : columns of data set (excluding columns used in `by`)

    Returns
    -------
    Output is the reconstructed DataFrame with MultiIndex columns. The first level
    of MI is unique values of groups, and second level of MI is the columns
    selected by users.

    Examples
    --------
    >>> d = {'h': ['h1', 'h1', 'h2'], 'a': [1, 3, 5], 'b': [3, 4, 6]}
    >>> df = pd.DataFrame(d)
    >>> reconstruct_data_with_by(df, by='h', cols=['a', 'b'])
       h1      h2
       a     b     a     b
    0  1.0   3.0   NaN   NaN
    1  3.0   4.0   NaN   NaN
    2  NaN   NaN   5.0   6.0
    r   )axis)r   groupbyr   from_productr   appendr   )
r   bycolsby_modifiedgrouped	data_listkeygroupr   	sub_groups
             r   reconstruct_data_with_byr(   X   s~    < ),Kll;'GI $
U ))C5$-8$K	#	#$ )!$DK    c                    |Xt        | j                        dkD  r@t        j                  | j                  D cg c]  }t        |       c}      j                  S t        |       S c c}w )zInternal function to reformat y given `by` is applied or not for hist plot.

    If by is None, input y is 1-d with NaN removed; and if by is not None, groupby
    will take place and input y is multi-dimensional array.
    r   )lenshapenparrayTr   )yr    r   s      r   reformat_hist_y_given_byr1      sS     
~#agg,*xxQSSAc,S1ABDDDq!! Bs   A&)r   )r   r   r   strreturnz"dict[Hashable, DataFrame | Series])r   r   r    r
   r!   r
   r3   r   )r0   
np.ndarrayr    zIndexLabel | Noner3   r4   )
__future__r   typingr   numpyr-   pandas.core.dtypes.missingr   pandasr   r    pandas.plotting._matplotlib.miscr   collections.abcr	   pandas._typingr
   r   r   r   r(   r1    r)   r   <module>r>      sx    "    :
 D() "(:
::':z+
+#++5++\"r)   